Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(21): 3037-3047, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27941882

RESUMO

The median survival for glioblastoma patients is ~15 months despite aggressive surgery and radio-chemotherapy approaches. Thus, developing new therapeutics is necessary to improve the treatment of these invasive brain tumors, which are known to show high levels of the eukaryotic initiation factor, eIF4E, a potent oncogene. Ribavirin, the only clinically approved drug known to target eIF4E, is an anti-viral molecule currently used in hepatitis C treatment. Here, we report the effect of ribavirin on proliferation, cell cycle, cell death and migration of several human and murine glioma cell lines, as well as human glioblastoma stem-like cells, in vitro. In addition, we tested ribavirin efficacy in vivo, alone and in combination with temozolomide and radiation. Our work showed that ribavirin inhibits glioma cell growth and migration, and increases cell cycle arrest and cell death, potentially through modulation of the eIF4E, EZH2 and ERK pathways. We also demonstrate that ribavirin treatment in combination with temozolomide or irradiation increases cell death in glioma cells. Finally and most importantly, ribavirin treatment in vivo significantly enhances chemo-radiotherapy efficacy and improves survival of rats and mice orthotopically implanted with gliosarcoma tumors or glioma stem-like cells, respectively. On the basis of these results, we propose that ribavirin represents a new therapeutic option for glioblastoma patients as an enhancer of the cytotoxic effects of temozolomide and radiotherapy.


Assuntos
Antivirais/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Reposicionamento de Medicamentos , Glioblastoma/tratamento farmacológico , Ribavirina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Ratos , Ratos Endogâmicos F344 , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Oncogene ; 34(17): 2204-14, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24954504

RESUMO

Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. As miR-124 expression is repressed in various cancer types (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared with regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 reintroduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients. Collectively, among the many pro-tumorigeneic properties of miR-124 repression in glioblastoma, we delineated a novel role in promoting tumor cell survival under stressful microenvironments, thereby supporting tumor progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Estresse Fisiológico , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Proteínas de Neoplasias , Transplante de Neoplasias , RNA Neoplásico/genética
3.
Leukemia ; 27(11): 2129-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23568147

RESUMO

Previous reports demonstrate that metformin, an anti-diabetic drug, can decrease the risk of cancer and inhibit cancer cell growth. However, its mechanism in cancer cells is still unknown. Metformin significantly blocks cell cycle and inhibits cell proliferation and colony formation of leukemic cells. However, the apoptotic response to metformin varies. Furthermore, daily treatment with metformin induces apoptosis and reduces tumor growth in vivo. While metformin induces early and transient activation of AMPK, inhibition of AMPKα1/2 does not abrogate anti-proliferative or pro-apoptotic effects of metformin. Metformin decreases electron transport chain complex I activity, oxygen consumption and mitochondrial ATP synthesis, while stimulating glycolysis for ATP and lactate production, pentose phosphate pathway for purine biosynthesis, fatty acid metabolism, as well as anaplerotic and mitochondrial gene expression. Importantly, leukemic cells with high basal AKT phosphorylation, glucose consumption or glycolysis exhibit a markedly reduced induction of the Pasteur effect in response to metformin and are resistant to metformin-induced apoptosis. Accordingly, glucose starvation or treatment with deoxyglucose or an AKT inhibitor induces sensitivity to metformin. Overall, metformin elicits reprogramming of intermediary metabolism leading to inhibition of cell proliferation in all leukemic cells and apoptosis only in leukemic cells responding to metformin with AKT phosphorylation and a strong Pasteur effect.


Assuntos
Apoptose/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Leucemia/tratamento farmacológico , Leucemia/patologia , Metformina/farmacologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Ácido Láctico/metabolismo , Leucemia/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , Espectrometria de Massas por Ionização por Electrospray , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...